$9 / 2 / 23$
MATH ZOGOA Tutorial
announcements:

- HO 2 is due tomorrow est llam.
- HO 3 is due $17 / 10$ at 11 am.
- after today, WEI. Yunsong will be teaching tutovals 4-6.

Section 6.4.
Recall: Taybors theonem: let $n \in \mathbb{N}, I=[a, b], f: I \rightarrow \mathbb{R}$ s.t. $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ exist and are $c t s$ on I, and that $f^{(n+1)}$ easts on (a, b). If $x_{0} \in I$, then for any $x \in I$. there exists a point $c \in I$ between x and x_{0} such that

$$
\begin{aligned}
& f(x)=\left.\left.f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}\right\} \begin{array}{l}
P_{n}(x) \\
\\
\\
\end{array}+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}\right\} \text { Rullor } \\
& \text { Polynomial }(x) \text { Remain der term in }
\end{aligned}
$$ derivatine/Lagronge form.

Neuters Method: let $I=[a, 10], f: I \rightarrow \mathbb{R}$ be twice differentiable on I. Sps $f(a) f(b)<0$ and the rt there are constants m, M s.t. $\left|f^{\prime}(x)\right| \geqslant m>0$; $\left|f^{\prime}(x)\right| \leqslant M$ for $x \in Z$, and let $K=\frac{M}{2 m}$. Then there exists a $I^{*} \subseteq Z$ contain a zero r of f sol for any $x_{1} \in I^{*}$, the sequence $\left(x_{n}\right)$ defined by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \text { for all } n \in \mathbb{N}
$$

belongs in I^{*}, and $x_{n} \rightarrow r$. Mooover

$$
\left|x_{n+1}-r\right| \leqslant K\left|x_{n}-r\right|^{2} \text { for all } n \in N
$$

216: Let $I \subseteq \mathbb{R}$ be open, let $f: z \rightarrow \mathbb{R}$ re differentiable on I, and suppose $f^{\prime \prime}(a)$ exists at $a \in I$. Show the at

$$
f^{\prime \prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-2 f(a)+f(a-h)}{h^{2}}
$$

Give an example where this lint exists, but the faction dos not have
a second derivilie at a.
Hint: Use L'Hopilul's Rule on RHS.
Pf: We naut to use LHR Since $f^{\prime \prime}(a)$ exists, there is a small idled of a muluich $f^{\prime}(x)$ exists and is cts at a.
So $f(a+h)-2 f(a)+f(a-h), h^{2}$ are both difterentialde for h small enough.

$$
\lim _{h \rightarrow 0} h^{2}=0, \quad \lim _{h \rightarrow 0} f(a+h)-2 f(a)+f(a-h)=2 f(a)-2 f(a)=0
$$

$\left(h^{2}\right)^{\prime} \neq 0$ for $h>0$. So we can apply LHR (differentiation wit h),

$$
\begin{aligned}
\text { RH } & =\lim _{h \rightarrow 0} \frac{f(a+h)-2 f(a)+f(a-h)}{h^{2}}=\lim _{h \rightarrow 0} \frac{f^{\prime}(a+h)-f^{\prime}(a-h)}{2 h} \\
& =\lim _{h \rightarrow 0} \frac{f^{\prime}(a+h)-f^{\prime}(a)+f^{\prime}(a)-f^{\prime}(a-h)}{2 h}
\end{aligned}
$$

$=f^{\prime \prime}(a)$ by defuition of $f^{\prime \prime}(a)$.

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{c}
x^{3} \sin \left(\frac{1}{x}\right), x \neq 0 \\
0, x=0, \\
x=0
\end{array}\right. \\
& f^{\prime}(x)=3 x^{2} \sin \left(\frac{1}{x}\right)-x \cos \left(\frac{1}{x}\right) \\
& f^{\prime \prime}(0)=\lim _{x \rightarrow 0} \frac{3 x^{2}-\sin \left(\frac{1}{x}\right)-x \cos \left(\frac{1}{x}\right)}{x}=\lim _{x \rightarrow 0} 3 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right) \quad \text { DNE }
\end{aligned}
$$

But $\lim _{h \rightarrow 0} \frac{f(h)-2 f(0)+f(-h)}{h^{2}}=\lim _{h \rightarrow 0} \frac{h^{3} \sin \left(\frac{1}{h}\right)-(-h)^{3} \sin \left(\frac{1}{-h}\right)}{h^{2}}$

$$
=\lim _{h \rightarrow 0} \frac{2 l^{3} \sin \binom{1}{h}}{l^{2}}=\lim _{h \rightarrow 0} 2 h \sin \left(\frac{1}{h}\right)=0
$$

Q18: $\operatorname{let} I \subset \mathbb{R}, c \in I . S_{p s}$ that f, g defined ouI and thess the demetrius $f^{(n)}, g^{(n)}$ exit and are offs on I. If $f^{(k)}(c)=g^{(k)}(c)=0$ for $k=0,1, \ldots, n^{n-1}$ but $g^{(n)}(c) \neq 0$, show then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{f^{(n)}(c)}{g^{(n)}(c)}
$$

Pf: Apply is to Taylor's an to f, g at $x_{0}=C$

$$
\begin{array}{rr}
\frac{f(x)}{g(x)}=\frac{\sum_{k=0}^{n-1} \frac{f^{(k)}(c)^{0}}{k!}(x-c)^{k}+\frac{f^{(n)}\left(z_{1}\right)}{n!}(x-c)^{n}}{\sum_{n=0}^{n-1} \frac{g^{(n)}(c)^{0}}{k!}(x-c)^{k}+\frac{g^{(n)}\left(z_{2}\right)}{-n!}(x-c)^{n}} & \text { for some } z_{1} \text { between } \\
\text { x abel } c . \\
\text { for some } z_{2} \text { betwea } \\
\text { x and } c
\end{array}
$$

$$
\begin{array}{ll}
=\frac{f^{(n)}\left(z_{1}\right)}{g^{(n)}\left(z_{2}\right)} \quad \begin{array}{l}
\text { Because } z_{1}, z_{2} \text { are betien } x \text { and } c, \\
\\
\text { by aby of } f^{(n)}, g^{(n)},
\end{array}
\end{array}
$$

$$
\text { by cry of } f_{f(n)}^{(n)}, g^{(n)}(2)
$$

$$
\begin{aligned}
& \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{(n)}\left(z_{1}\right)}{g^{(n)}\left(z_{2}\right)}=\frac{f^{(n)}(c)}{g^{(n)}(c)} \\
& \forall \varepsilon_{,} \exists \delta \text { sec }|x-c|<f_{1}
\end{aligned}
$$

say if $|x-c|<f$, then $\left|z_{1}-c\right|<\rho_{1},\left|z_{2}-c\right|<f_{2}$
Q19. Show that the function $f(x)=x^{3}-2 x-5$ has a zers r in $[2,2.2]$. If $x_{1}=2$ and we define the sequence $\left(x_{n}\right)$ using Aleuton's method, show that $\left|x_{n+1}-r\right| \leqslant(07)\left|x_{n}-r\right|^{2}$
Compute x_{4}, (x_{4} is accurate to within six decimal places).

Pf: fucts. $f(2)=-1<0 \quad f(2.2)=1.248>0$.
So flas a zers r in $[2,2.2]$.

$$
\begin{aligned}
& \left|f^{\prime}(x)\right|=\left|3 x^{2}-2\right| \geqslant\left|32^{2}-2\right|=10 . \quad \text { So } k=\frac{M}{2 m}=\frac{132}{20}=0.66 . \\
& \left|f^{\prime}(x)\right|=|6 x| \leqslant|6: 2.2| \leqslant 13.2 .
\end{aligned}
$$

So we heve $\left(x_{n+1}-r\right) \leqslant 0.7\left|x_{n}-r\right|^{2}$.

$$
\begin{aligned}
& x_{1}=2 \\
& x_{2}=2-\frac{f(2)}{f^{\prime}(2)}=2.1 \\
& x_{3}=2.1-\frac{f(2.1)}{f^{\prime}(2.1)}=\frac{11761}{5613}=2.0945681211 \ldots \\
& x_{4}=\frac{11761}{5615}-\frac{f\left(\frac{1761}{5615}\right)}{f^{\prime}\left(\frac{1761}{5615}\right)}=2.0945515
\end{aligned}
$$

