9/2/23 MATH 2060 A Tutorial
announcements.
-HW2 is due tomorowert llam.
-HW3 is due 17/10 at 11am.
- after today, WEI. Yunsong will be teleching tutowals 4-6.
- After today. WEI. Yunsong will be telecting tutowals 4-6. Section G.4.
Recall: Taylor's theorem: let NEN, I=[a,b], f: I > R s.t. f', f'',, f(m)
Recall: Taylor's theorem: let NEN, I=[a,b], f: I-> IR s.t. f', f'',, f'(n) exist and are its on I. and that f ⁽ⁿ⁺¹⁾ exists on (a,b). If xoe I, then
for any XEI, there exerts a port CEI bothern X and Ko such that
$f(x) = f(x_0) + f'(x_0) (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \int \frac{f^{(n)}(x_0)}{10 \sqrt{n!}} (x - x_0)^n \int \frac{f^{(n)}(x - x_0)}{$
+ f ⁽ⁿ⁺¹⁾ (C) (x-x) ⁿ⁺¹ } R _n (x) - Remainder term in derivative/Lagrange form.
(nti) (ct is) i derivatue / corrange form.
· · · · · · · · · · · · · · · · · · ·

Neuton's Method. Let I = [a, b], $f: T \rightarrow \mathbb{R}$ be truised differentiable on I. Sps f(a) f(b) < 0 and there there are constants M, M s.t. $(f'(x)) \ge M > 0$, If"(x) ≤ M for KEZ, and let K= M. Then there exists a I EZ contains a ZERO r off s.t. for any X, ET*, the sequence (xn) defined by $X_{n+1} = X_n - \frac{f(x_n)}{f'(x_n)}$ for all new belongs in I", and Xn ->n. Moreover Knei-r EK Kn-r for all new. 216: Let ISR be grea, let f'Z = R be differentialde on I, and suppose f"(a) exists at a e I. Show theat $f''(a) = \lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{p_a^2}$ Give an example where this limit exists, but the function does not there

a second derrieolie at a. Hout: Use L'Hopfeil's Rule on RHS. Pf: We vent to use LHR. Since f'(a) exists, there is a small ubbid of a muliily f'(x) exists and is cts at a. So f(ath)-2f(a)+f(a-h) h' are both differentialde for hismallemangh. $\lim_{h \to 0} h^2 = 0, \quad \lim_{h \to 0} f(ath) - 2f(a) + f(a-h) = 2f(a) - 2f(a) = 0.$ (h2) = 0 for h>0. So we can apply LHR (differentiativy with) $RHS = \lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a+h)}{h^2} = \lim_{h \to 0} \frac{f'(a+h) - f(a+h)}{2h}$ $=\lim_{h\to 0}\frac{f'(a+h)-f'(a)+f'(a)-f'(a-h)}{2}$

 $= f''(a) \quad by \quad definition \quad of \quad f''(a).$ $f(x) = \begin{cases} \chi^3 \sin(\frac{1}{x}), \quad x \neq 0 \\ 0, \quad \chi = 0 \end{cases}$ $f'(x) = 3x^2 \sin\left(\frac{1}{x}\right) - x\cos\left(\frac{1}{x}\right)$ $f''(0) = \lim_{x \to 0} \frac{3x^{7} \sin(\frac{1}{x}) - x^{2} \cos(\frac{1}{x})}{x} = \lim_{x \to 0} 3x \sin(\frac{1}{x}) - \cos(\frac{1}{x}) DNE.$ But $\lim_{h \to 0} \frac{f(h) - 2f(0) + f(-h)}{h^2} = \lim_{h \to 0} \frac{h^2}{h^2} = \frac{1}{h^2}$ $=\lim_{h \to 0} \frac{2h^3 \sin(\pi)}{h^2} = \lim_{h \to 0} 2h \sin(\frac{1}{h}) = 0.$

218: let ICR, CeI. Sps that f,g defined on I and that the demotions $f^{(n)}, g^{(n)}$ exist and are ots on I. If $f^{(k)}(c) = g^{(k)}(c) = 0$ for k=0, j, ..., mbut g(n)(c) = 0, show that $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f^{(n)}(c)}{g^{(n)}(c)}$ Pf: apply is to Taylor's The to f, g at xo=C. $\frac{f(x)}{p(x)} = \sum_{k=0}^{\infty} \frac{f(k)(c)}{k!} (x-c)^{k} + \frac{f(k)(z_{i})}{k!} (x-c)^{n}$ for some Z, betueen X auel C. q(x) $\sum_{k=0}^{N-1} \frac{q^{(k)}(c)}{k!} (x-c)^{k} + \frac{q^{(k)}(z_{2})}{M!} (x-c)^{n}$ for some Zz betrien X Auel C.

 $= \frac{f^{(n)}(z_{1})}{g^{(n)}(z_{2})}$ Because Z1, Z2 are between x and c, by cty of fan, gin) $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f^{(n)}(z_1)}{g^{(n)}(z_2)} = \frac{f^{(n)}(c)}{g^{(n)}(c)},$ 42, 33 s.t. [x-c] <f say if |x-c| < 8, then |z,-c| < 8, |zz-c| < 82 Q19. Show that the function $f(x) = x^3 - 2x - 5$ has a zero rin [2,2.2]. If $x_1 = 2$ and we define the sequence (x_1) using Newton's method, show that $|x_{n+1}-r| \in (0.7) |x_n-r|^2$ Compute X4. (x4 is accurate to inthin Six decenal places).

Pf: fots. f(2) = -1 < 0 f(2.2) = 1.248 > 0. So flue a zero r in [2,2.2].	
$ f'(x) = 3x^2 - 2 3 3 \cdot 2^2 - 2 = 0 $ $ f''(x) = Gx \le G: 2 \cdot 2 \le 3 \cdot 2 $ $So K = \frac{M}{2m} = \frac{ 3 \cdot 2 }{20} = 0.66$	· · · · · · · · · · · · · · · · · · ·
So we have $ X_{n\in i}-r \in 0.7 X_{n}-r ^2$.	· · ·
$\begin{aligned} x_1 &= 2, \\ x_2 &= 2 - \frac{f(2)}{f'(2)} &= 2 - 1 \\ f'(2) & 1 - f(2,1) \\ 1 &= 1 - f$	· · ·
$X_{3} = 2.1 - \frac{f(2.1)}{f'(2.1)} = \frac{11761}{5615} = 2.0945681211$ $X_{4} = \frac{11761}{5615} - \frac{f(\frac{11761}{5615})}{5615} = 2.0945515$	· · ·
$f'(\frac{1761}{5615}) = 2,0945515.$	• •